先锋设计专辑NO.10 — Shuai Feng 封帅

第十期的先锋专辑为您奉上封帅的四个精彩作品:树屋,抗震减噪结构 ,树状管脉与微气候(AA最佳毕设,2011年日本新建筑中央玻璃建筑竞赛头奖),AA建筑联盟学院天台加建 。请欣赏!!(图片较多,页面若是没加载完请刷新)

项目标签

文章分类 :
标签 :
 
 
 
 
 
 
 
第十期的先锋专辑为您奉上封帅的四个精彩作品:
1 树屋
2 抗震减噪结构
3 树状管脉与微气候(AA最佳毕设,2011年日本新建筑中央玻璃建筑竞赛头奖)
4 AA建筑联盟学院天台加建
 
 
请欣赏(图片较多,页面若一次没加载完请刷新)
 
 
非常感谢封帅在gooood上分享他的作品:
Appreciation towards Shuai Feng for providing the following description:
 
 
 
 
 
 
 
Tree House

 
 
Tree House (2004) was submitted for the structural course, in the second year. The
concept was to limit and re-generate structures through lines of sights in a small scale
building, with inputs including views to the stage from the auditorium, and views
towards the skies along the paths underneath the auditorium. The resulting generated
structure took a ‘tree’ form. Large-scale physical models were created for structural
analysis and light diffusion simulations.

 
树屋(2004),是二年级的结构课程作业。在一个小型建筑项目中,试图使用行为中
的视线来限制及切割结构形式。其中包括观众席看向舞台的视线,也包括观众席下方
移动路径看向天空的视线。最终切割生成的结构形式呈现树状,以物理模型深化结构
与光效漫射模拟。

 

.
.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aseismic/Acoustic Structure
 
 
Aseismic/Acoustic Structure(2008), is work conducted by the studio of Yufang Zhou.
The complex roof structure was formed by a cluster algorithm based on the gradient of
solar irradiation intensity and pedestrian densities, to achieve differentiated shading
and noise-reduction respectively. Large-scale physical models were constructed to
further examine the structural performance of the flexible joints and their threshold of
deformation.


抗震减噪结构 (2008),是在周宇舫工作室进行的结构实验,使用集群算法根据基
地太阳辐射强度及人流密度图案生成复杂几何屋面,区域化进行遮阳及减噪。大型物
理模型测试柔性节点的形变阀值。

 

 
 
 
 
 
 
 
 
 
 
 
 

 

Vascular Strategies for Microclimates
Concourse of Waterloo Station, London, UK
树状管脉与微气候
英国伦敦滑铁卢车站大厅改建
 
This project aims to investigate a new microclimatic strategy for the proposed
concourse of the Waterloo Railway Station in London, UK. A hierarchical branch
ventilation system set within the shell surface acts like a turbulence damper, enhancing
the stability of the air flow supply. The concrete shell incorporates a differentiated
distribution of fibre and aggregate materials, whose distribution corresponds to the
architectural programmes housed underneath.
 
A computational method is developed in order to modify the concourse's envelope form
by deforming it towards the prevailing wind direction, while simultaneously promoting
local variations according to programmatic demands. Computational Fluid Dynamics
analysis was deployed to investigate ventilation pattern in relation to the aerodynamic
articulation of the volume, the placement of inlet and outlets points and the branching
patterns of the air ducts. A large-scale, variable section slip form casting machine is
developed for multi-aggregate embedded concrete to be cast into doubly curved shell
surfaces.
 
Key Words:
Microclimates, Biomimetic, Material, Construction, Vascular
项目在伦敦滑铁卢车站大厅改建中倡导了微气候的策略。通过对于蚁冢的仿生学的研
究,从世界观上对于风力工程和建筑通风领域的昂贵手段进行了颠覆。在建筑形式生
成过程中,计算机程序根据数字风洞模拟试验来优化气流,持续引导车站大厅屋面向
盛行风方向分别形变,衍生出符合空气动力学的建筑形体。建筑的混凝土屋面施工过
程由大尺度滑模机械完成。履带式变截面滑模机械,特别针对在双曲面屋面中浇筑包
括隔蓄光热性能的多种骨料定制而成,缩减工时与开支。
关键词:
微气候 仿生学 材料 施工 树状
“随流赋形”是针对人工环境与自然环境间日益增大的裂痕与壁垒所提出的策略。在自
然界中,藉由材料的性能,生物将体内的新陈代谢成功延伸至体外【1】,通过对于
自身以及自身完成的构筑物的改造,操纵了自然中的能量流动来完成自身的能量循
环,使得生物个体的能量循环在一个超出个体体积数百倍的空间内完成。蚁冢作为其
中的一个例证,其使用的复杂形体和材料手段对环境的控制,极大地模糊了生物,生
物构筑物与所处环境之间的界限,进而引发我们对人工自然环境与自然环境在历史上
及今天的关系的思考。“随流赋形”,“宛若天工”作为积极对待自然环境的人工改造的哲
学,是可以在今天具有普世性的城市环境中得到科学量化与实施的。基于这种思考,
方案的选址放在了远离自然环境的伦敦市中心的车站大厅,用以验证积极的设计策略
超出城乡与文化差异限制的可能性。
在本方案中,城市环境中常见的完全与室外隔绝的传统空调暖通系统被质疑,而传统
的被动式建筑又不能有效地针对具体的环境和功能作出反馈,所以通过严密地勘察与
模拟基地的实际环境与功能现状,顺应现状中微气候的差异性与功能的差异性去进
行“相地”与对建筑“赋形”,成为了“顺其自然”的建筑设计策略。在下文中,将使用如下
的标题来分别叙述具体的做法:
“随流赋形”: 湍流与稳流
“随流赋形”: 气流
“随流赋形”: 人流与热能
“随流赋形”: 树状管脉层级
“因流施材”: 湍流与制冷
“因流施材”: 滤光与蓄光
“因流施材”: 履带滑模施工
 
 
 
 
1.蚁冢与脉管系统 2.二阶段换气 3.心肺呼吸机 4.肺阻与呼吸频率 5.高频换气呼吸治疗
6.蚁冢表面实测风频 7.蚁冢/穴间水平衡模型 8.Martin Lüscher蚁穴新陈代谢模型
9.冢表风动压差与边界层效应
1.An embedded vascular tunnel network in mounds 2. Two-phase gas exchange in lung
system 3.heart lung machine 4.Impedance of the lung and the frequency 5.
Respiratory therapy of high-frequency ventilation in operation 6.Measured wind velocity
variation at the mound surface 7.Model of water balance in a nest and mound 8.
Martin Lüscher's ' model of the conlony's metabolism 9.Wind-induced pressure value
pattern distributed on mound in combination with atmospheric boundary layer effects
 
 
 
TRANSIENTS
The author proposes a new application for airflow engineering in architecture:
harnessing constant and steady airflows from the integral surface layer where turbulent
winds are generated, through simple Biomimetic approaches. Biomimetic technology
can offer inexpensive and simple solutions, which would otherwise require elaborate
engineering solutions with high capital and operational expenditure. This is
counterpoint to traditional wind engineering philosophy, which captures reliable wind
energy from high-rise locations with highly capitalised wind turbines. Within architecture
and engineering, winds are into simple empirical models, depicted as a vector with
implicitly predictable velocity and direction. In fact air movements are dynamic and
constantly changing. This unpredictable nature of wind is generally regarded as
'inefficiency’.
 
Within nature, such 'inefficiencies' can elegantly and resourcefully be regulated, as
demonstrated within a termite mound. In order to enhance the stability of ventilation, the
termite mound is embedded with a complex hierarchical vascular tunnel network,
damping gusts of wind into constant steady flow supplies.
 

“随流赋形”: 湍流与稳流
在风力工程,以及建筑的自然通风领域,风作为一种能源常常是被理解为或者简化为
具有固定的方向和力度的气流,具有定向的平稳的供给。然而正如我们所观察到的一
样,气流随着时间不断产生方向和力度上的瞬时改变。近地面,也就是人类活动所处
的风环境,由于地表的复杂地形以及建筑物等障碍物的干扰,主要是由高风频的湍流
所组成的。这也解释了为什么风常常被人们描绘为一种动态的瞬时流动,最缺乏的反
而就是恒定的可预测方向上的稳定的持续的供给。而不论是在风力工程还是在建筑的
自然通风领域,持续稳定的气流供给都是至关重要的。在设计中,风的性质也是被假
想成了它恰恰所缺乏的样子,在图纸上表示风向,并用以指导设计的恒定箭头,恰恰
成为了现实中诸多建筑通风案例效率不高的肇因。
风力工程领域不能容忍效率不高,为了使风变成我们想要它成为的样子,风力涡轮需
要花费高昂的造价穿透近地面层,去获得相对恒定的气流。即使是这样,无处不在的
湍流也被视为不被欢迎的成分,与影响效率的罪魁。在自然界,与偏执的人类相比,
经济又“顺其自然”的蚁冢,却展现了一种截然不同地对待湍流的态度,展现了从设计
哲学上具有颠覆性的世界观。身处“无效率”湍流之中的蚁冢被优雅的转化成为了一个
风频的分离器,作为蚁的体外“呼吸器官”,不能依赖肌肉的驱动完成“肺”所应有的持续
呼吸,却在蚁冢内外建立起了一个风频的梯度。而设计哲学的颠覆也体现在针对湍流
的态度上,不但没有被视为废弃物甚至罪魁,而且被用以预冷进入蚁冢的气流。
这般无需高昂造价进入高空便能获得持续气流供给的设计哲学为作为城市大部分组成
部分的低层和中层建筑的通风策略带来了启迪。为了进一步揭示工作原理,项目针对
关键参数进行了建立在流体力学软件上的虚拟风洞模拟试验。在实验室科学中,风频
的测试通常建立在示踪气体扩散追踪(Tracer gas palse-chase)实验数据的基础上,
数字实验的检验不可能通过相同的观察型模型建立,但是却可以与之互验。在基于计
算机流体动力学软件的虚拟风洞实验建立之初,风洞中的标准方体的表面风压值被拿
来与ASHRAE(美国国家空调暖通工程委)的授权数据进行参校。 在实验数据吻合的
基础上,针对砌体中的管径进行湍流穿透检测,通过输出气流的雷诺数对其风频衰减
效能分别进行评估。并进一步对效能更加突出的管径的参数进行测定,包括相对给风
方向的向背,管径直径,分支角度等。实验的结果给出了能够保证湍减性能的参数调
节范围与阀值。
 
 
10.计算流体动力学的虚拟风洞实验,测定管径的参数范畴与阀值 11.不同频谱瞬流的穿
透度 12.现有大厅屋表面风压,瞬时轨迹与湍流轮廓
10.CFD wind tunnel experiment for specific range of duct radiuses, angles and inlet
directions 11.Differential penetrance of the different components of the frequency
spectrum in transient wind 12.Pressures, flow trajectories and turbulence profiles acting
upon the current concourse envelope
 
 
 
CONVECTION
Waterloo Station, one of the largest railway terminals in the UK, is situated on London's
South Bank, Waterloo's location within the urban heat island, and its proximity to the
river Thames – a cool body of water – results in cyclical convection winds between the
land mass and river, occurring and reversing night and day.
 
Founded on fluid dynamics research, a computational method was developed aiming
to optimise energy savings by modifying the existing form of Waterloo Stations
concourse and envelope. This was achieved dynamically by deforming the form
towards the prevailing wind directions on either side. In addition to form-finding,
Computational Fluid Dynamics (CFD) analysis was deployed to investigate ventilation
patterns in relation to the aerodynamic articulation of the volume, the placement of inlet
and outlets points and the vascular patterns of the air ducts.
 
 
“随流赋形”: 气流
方案的选址放在了远离自然环境的伦敦市中心的车站大厅。作为具有普适性的基地选
址,滑铁卢车站大厅具有高密度城市环境中所面临的诸多挑战与优势。一方面,车站
汇集了包括欧洲之星在内的密集线路,是英国最大的铁路终端枢纽之一,也成为英国
人流通勤量最高的公共空间;另一方面,车站位于伦敦城区一区,处于城市热岛的中
心位置,同时如同在许多大型城市中可以观察到的一样,它也紧邻横穿城市的泰晤士
河-一个大型的冷却水体。水陆质量之间的蓄热差异导致了一个昼夜交替的对流风循环
的产生。相对于城市随季节与气候变化的常年盛行风向,水陆对流风无疑提供了相对
更加稳定与持久的气流供给。
针对昼夜交替的对流供给,在设计过程中渐进发展出一个基于流体动力学研究的计算
机策略,通过迭代优化车站大厅的屋面形式来逐步优化大厅的能源消耗。这个动态的
形式生成过程是通过一系列指引屋面末端形变的程序完成的。屋面的西端和东端分别
以白昼的水陆流和夜晚的陆水流为驱动针对“风影”进行形变。在每一代的迭代演算
中,生成的几何结果都被代入计算流体动力学软件中进行分析,得到的数据被继续用
于作为下一次迭代的输入。迭代演算生成的不只是基于流体动力学计算的最终大厅屋
面形式,同时通过对入出风口进行假定为直径2米的赋值,也验证了屋面正负压区域
的给出风口定位及尺度,以及其相对于车站大厅体积的合理性,为进一步确定树状管
脉系统的通路做好了铺垫。
 
 
13.微气候策略 14.空调暖通系统与恒气候 15.被动系统与衰减气候 16.计算机流体动力
学 17.行人仿真 18-19.空间连续性与微气候梯度 20.通过操纵自然环境中的能量流动来
延伸生物自身的新陈代谢能量循环 21.ASHRAE(美国国家空调暖通工程委)授权数
据验证 22.风切变轮廓上的变速 23.传统的风力工程世界观
13.Microclimate strategy  14.HVAC system and constant climate 15.Passive system
and damped climate 16.Computational Fluid Dynamics (CFD) 17.Pedestrian
simulation 18-19.Spatial continuity and gradients in microclimates 20.Manipulate
environmental energy for extended metabolism 21.Validated experimental data
authorized by fundamentals of ASHRAE 22.Velocity variation following the general
tendency of the wind shear profiles 23.Traditional wind engineering philosophy
 
 
 
 
24.滑铁卢车站毗邻泰晤士河水体 25.昼夜交替的对流风循环 26.迭代计算机优化程序
衍生符合空气动力学的建筑形体 27.形变屋表面压差优化 28.气流瞬时轨迹通径测试
29.四开口屋面壳体内外压差 30.倒角与压差
24.Waterloo’s proximity to Thames 25.Cyclical convection winds between the land
mass and river, reversing night and day 26.An iterative computational method resulting
aerodynamic form 27.Optimised shell surface pressure 28.Flow trajectories
penetration path 29.Inner and outer pressures of the shell with four openings 30. 
Filleting and pressure difference

 
 
 
ACTIVITIES
Spatial continuity was created by merging the four vertical programmatic layers of the
station concourse into one continuous geometrical and topological surface, offering the
potential to transform the spatial experience by varying microclimates. Meanwhile, the
use of pedestrian simulation, calibrated by on-site weekly synthesized photometrology,
highlighted the necessity to revise the positioning of the waiting lobbies. These were
relocated based on the aforementioned fore-and-aft pedestrian movement.
 
Consequently, a variety of programmes were reorganized, informed by simulation
patterns. Each of the concourse's were ranked based on pedestrian density, velocity
and direction requirements in relation to a variety of spatial and environmental
parameters including; volume, height, width/depth, illuminance, temperature and
ventilation. A diverse set of space typologies emerged, sometimes with conflicting
requirements, which resulted in an array of optimised forms, resulting in a hybrid shell
form informed by the activities housed within.
 
The continuous surface creates a landscape that spreads up above the surged
entrance to the underground tube, forming a topography that can include a plethora of
rich cultural spaces from temporary art galleries to children's theaters. The
uninterrupted topology of the space acts as a guide for commuters and a complex
culture-enriched social hub mixed with the necessary information checking, shopping,
catering, entertaining, performing, exhibiting, communicating and celebrating within one
of the busiest public space in Europe.
 
In 2008, 187.236 million passengers travelled through Waterloo station. The body
energy generated from half million commuters travelling through the concourse every
day radiate enough energy to keep the enormous concourse shell at a constant
temperature of 22-25 degree Celsius, if properly insulated. In order to harness this
energy, high thermal mass was used through the concourse. This was employed in
allocated patterns generated by pedestrian simulations, which was driven by a
microclimatic strategy. The simulations were calibrated by weekly, on-site synthesized
photometrology, in order to achieve a damped fluctuation in temperature between
'peak time' and 'off-peak time', meeting demands of differentiated activities.
 
 
“随流赋形”: 人流与热能
电影《黑客帝国》描绘了人类的文明活动消亡之后机器帝国倡导的能源新策略,将大
量存在的人体被简单地理解为以生物发电为原理的电池,使用电解液体刺激生物体发
电,再由集成的机械电塔进行电力的储蓄与再分配。在滑铁卢的车站大厅内,从人体
身上获取能源似乎不需要如此大费周章,当然更不需要人类的消亡。
在2008年一年中,在滑铁卢铁路枢纽在线票据记录可查的通勤人数是一亿八千七百三
十二万,数据还且是建立在2008年欧洲之星的终端枢纽维护的时间区间内。作为欧洲
最繁忙的铁路终端之一,通勤人数的数量与密度对于包括中国在内的高密度城市的交
通综合枢纽是有可见的参考价值的。平均每个工作日经过车站大厅的逾五十万通勤者
所产生的人体热能,在适当的隔热处理后,足够将巨大的大厅空间的气温在自然状态
下维持在摄氏22至25度的区间内。为了采集这些热能,不同于倚赖中央通风系统的匀
质采集策略,设计为了应对微气候环境中存在的连续动态气候梯度,首先针对车站大
厅的通勤人流与功能区块做出了重新的调整与安排。四个主要的车站大厅功能楼层被
延展的曲面步道融合成为一个在几何与地形上呈现为连续曲面的室内景观式广场,为
潜在的沿地势起伏的连续微气候梯度提供了空间基础,也营造了存在于交通枢纽中流
动变化的空间体验。
“摄影测量术”为人流分析的数字模拟提供了物理上的校验。在滑铁卢车站管理层的支
持下,以周记的实地人流摄录被分别按照工作日与休息日的分类,使用轮廓识别技术
合成为人流密度周图,大厅空间中人流轮廓叠影形成的颜色梯度为人流随时间移动停
留的密度、速度与方向提供了图像上记录与呈现。人流观测的结果也得到了数字模拟
技术的支持,为了精确捕捉大厅内部不同功能空间的具体人流密度与方向甚至速度,
设计在模拟阶段主要咨询了能够提供基于“主体”建模(agent-based)的行人及人流疏
散仿真机构。仿真结果在观测校准后,既为后文中重新安置的建筑功能提供了有力的
依据,也为热质在围护结构中的分布提供了平面及立面上的密度投影,衰减乃至抹平
处于通勤“高峰期”与“低峰期”时段中,地面层主要交通流线上方气温的大幅波动。
经由校准的人流仿真图案驱动,滑铁卢车站大厅的功能组团围绕东中西三部分屏前集
散广场展开,并依据各自的功能需求被进行评级。评级基于功能所处区域中行人密
度、速度、方向以及与之相对应的空间与环境需求,包括空间体积、高度、宽度/深
度、照度、温度、湿度、新风需求等。一种完全多样化的空间与地形从中涌现了出
来,基于其中一些并置的功能组团(诸如外延式餐饮、无线候车区与坡道小影院、酒
吧等)对于照度、温度等的多样化需求,大厅屋面进一步按照其下覆盖的功能区域做
出了局部形变。在一系列诸如功能上“妥协”或“共赢”的分区域评级后,原先纯粹由对流
所驱动的曲率被逐区细分调整,综合生成了新一轮的屋面形式;同时,在大厅的地面
层,连续的地形景观从站台上方一路蔓延至地下铁入口下方,生长出犹如复杂地势般
的几何形式,能够容纳并适应从下沉式临时艺术展廊、地铁入口上方阶梯儿童剧场到
景观式餐饮空间的一系列多样化社会行为。
 
 
31.摄影测量术 32.合成的基地人流密度周图
31.Photometrology 32.On-site weekly synthesized pedestrian movements
 
 
33.空间与环境需求协商重生屋壳 34.大厅功能组团评级重组 35.红外热像摄影,显示
室内得热 36.热质分布 37.经校准的人流仿真模拟
33.Negociated shell form between environmental and spatial requirements 34.
Reorganization of a variety of programmes, ranked based on multi-criteria 35.Infrared
photography, showing interior heat gain. By Frankfurter Allgemeine Zeitung 36.
Thermal mass distribution 37.Calibrated pedestrian simulation
 
 
 
COUPLED COOLING
Evaporative cooling, coupled with vigorous ventilation occurs naturally in dogs during
respiration. With lungs driven at a very high frequency to specifically match the resonant
frequency of the thoracic cage, dogs can retain the transient turbulence within a short
distance into its airways, enhancing the evaporation for cooling.
 
Inspired by this, porous material was deployed at the outer surface of the concourse's
shell and distributed in gradients around the region where high eddy patterns were
more sturdily produced. With its high water-absorbance capacity it can reduce the
collected rain water loss, therefore allowing for higher evaporation levels which can then
cool the air supply.
 
 
“因流施材”: 湍流与制冷
蒸发制冷,在很多时候是气体交换的自然副产品,或者说是呈“伴生”关系。通过控制
呼吸时肺与胸腔的共振频率,犬类可以将风的高频湍流部分排斥在呼吸道的上端位
置,恰恰是与上端大面积接触的外部湍流,促进蒸发完成了预冷【3】。在蚁冢内外
建立起了一个风频梯度,将所谓“废弃物”的副产品-湍流致密囤积在蚁冢表层,大面积
促进了不断遭遇主动增湿的表层土壤中的水分蒸发。从设计的角度思辨,蚁对土壤的
主动增湿虽然对于车站大厅多量高密的通勤人群的潜质提出了有意义地设问,但是基
于工程的稳定性,设计仍选择从材料角度做出反馈。车站屋面表面的计算流体动力学
模拟数据被重新导入计算机辅助建模软件中,根据雷诺数将湍流性状更为突出的屋面
表面区域图案转印下来,以多孔材料呈梯度地沿图案进行埋植,在雨季提前预冷被引
入大厅屏前集散广场周围区域的气体供给。
 
 
 
LIGHTING
Hierarchical Biomimetic Vascular ducts are located around the faces that receive the
most intensive solar incident radiation. These can then trigger thermo-siphon ventilation
phenomena during the early morning and late afternoon's rapid heating hours, while
simultaneously allowing sunlight to penetrate through in early morning, but get bounced
in late afternoon.
Placed between the densest terminal vascular ducts, they aim to comply with the strict
requirements regarding illumination intensity and air changes for large crowds. Due to
the differentiated gradational transformations, the lighting quality fluctuates through the
space in different densities.
 
The resulting concrete envelope is gradationally translucent with fine vascular veins
creating ever changing material palette of diffused daylighting and coloured shadows,
serendipitously showing the ever-changing flows of the moving city outside. At night the
envelope metamorphoses into a glimmering patchwork of darkness and sources of
light both mysterious and omnipresent.
 
 
“因流施材”: 滤光与蓄光
谷崎润一郎【4】在《阴翳礼赞》中将乍暗忽明的半透明建筑围护结构形容为:“犹如
初雪霁微,将光线含吮其中,有调和明暗的质感”,“美也不存在于物体,却存在于物
与物间流转的阴翳的戏剧与明暗之中”。而在车站屋面这样一个宏观的尺度下,允许光
线渗透与漫射的机理也势必会有所不同。随着屋面起伏而弥散分布得分支管径,依照
着屋面表面全年太阳辐射的投射图案形成天花上深浅浓淡的薄暗阴翳。由于车站屋面
如“地磁”蚁冢般,长轴指向南北方向,管径的分布便能够在早晨与黄昏的日照下急速
受热过程中在屋面的向阳背阴面之间驱动局部的热力对流。同时,管径也与清晨的阳
光形成微妙的角度,并层层过滤午后的直射阳光,在全天中向大厅洒下明灭沉浮的光
点。密集的隔蓄光骨料依据全年采光模拟的投射图案,种植在了树状管脉最为浓密的
分支之间,用繁杂的微光为下方聚集的人流负向勾勒出屋面中浓荫般沁入混凝土的树
状脉管的纤细轮廓。最终,大厅的明暗效果随着空间与功能的转化沉浮流动。在白
昼,混凝土屋面迎着太阳的角度忽明忽灭,在渐变的质地中沉淀出漫天密植的分支管
径的荫郁,稍纵即逝地过滤着瞬息万变的漫射光线、阴影甚至颜色,模糊地浮现出自
周遭川流不息的大都市中心的流动景色。在夜晚,大厅的屋面蜕变为城市中心一片薄
暗的暧昧荧幕,在不同尺度上聚集成或纤弱或耀眼的朦胧影像。
 
 
 
38.犬类呼吸与伴生制冷 39.屋表面 湍流性状与集水 40.湿度转移 41.“地磁”蚁冢
日照辐射分析 42.屋表面全年日照辐射分析 43.管径朝向与日光夹角
38.Coupled cooling with dog’s respiration 39.Turbulence profile over shell
surface and water absorption 40.Moisture transportation 41.Solar insolation on
a ‘magnetic’ termite mound 42.Annual solar insolation over shell surface
43.Orientations of vascular dusts in relation to direct sunlights
 
 
 
VASCULAR HIERARCHIES
In animals & plants optimal resource distribution is achieved by a bifurcating hierarchy
of network branches. The bifurcating Hierarchies are further optimized in radii and
length to minimize the flow resistance. This is based on the 'design rules' as described
by Scaling laws etc.
 
The terminal units of the network applied in the concourse shell are not like that in
capillaries', but still aim to allow regulation of transient flows of wind within the required
environmental performance. Four Hierarchies of vascular ducts are designed to control
the air, from the discharge zone on shell's outer surface through to the numerous
terminal units, the frequency increasing proportionally to the proximity to the waiting
lobbies.
 
 
“随流赋形”: 树状管脉层级
“流动”是复杂系统中的无处不在的现象,从气体液体的流动,到更为抽象的热流、人
流与物流。“随流赋形”的策略,旨在对于流动中存在的普遍规律对设计的指导意义,
在不同尺度上做出探索。在植物与动物的新陈代谢行为中,气液体的最优化传导藉由
一个复杂的分级树状脉管系统完成。而整个输送网络的终端单元结构尺度与生物体积
无碍,它在人体内是心血管系统中的毛细血管,在植物体内则是维管系统中的叶柄。
在本方案中,它具体指前文中能够保证湍减性能的分支管径。分支管径的分布是根据
大厅内部不同功能组团的“新风需求”需求评级来排布的,集中分布于三个屏前集散广
场周围,并沿大厅围护结构及地面层呈现出浓密疏淡的连续变化。不同于动植物体内
的传输系统,前文中经由流体动力学计算得到的赋值为2米的大厅屋面出入风口直
径,由幂率理论等确定每一个相邻层级的管脉系统的尺度缩减比值,只经过四层植入
建筑围护结构内部的树状管脉层级,便缩减为能够满足湍减性能的末端管径的尺度参
数范畴。
 
 
44.多孔性与透明性 45.过度遮蔽测试 46.单行流线 47.屋内面采光分析 48.有限元形变
分析 49.结构局部加固 50.四层植入树状管脉层级
44.Porosity and transparency 45.Over shadowing test 46.Non-return circulation 47. 
Lighting analysis 48.Finite element total deformation analysis 49.Local structural
reinforcement 50.Four Hierarchies of embedded vascular ducts
 
 
 
51.纵横向滑移式箱梁模架 52.双曲模板 53.构造切割十三跨,每跨十五米 54.模板分缝
朝向 55.防水屏幕 56.单曲浇筑 57.砌块浇筑 58.低层变截推移
51.Vertical and horizontal slip-form casting 52.Doubly curved formwork 53.13 pieces’
constructional  division, each with a 15-metre span 54.Formwork seam orientation
55.Water-proof screen 56.Singly curved casting 57.Brick casting 58.Lower deck
variable-section casting
 
 
 

SLIP CASTING
The construction of the concrete form will utilise a customised large-scale, variable-
section slip form casting machine developed especially for multi-aggregate embedded
concrete, which will be cast into doubly curved shell surface, reducing waste material,
labour and time with minimal scaffolding.
 
Horizontal slipping direction avoids the material redundancy in vertical casting. In order
to further reduce the construction scale to save costs and labour, the concourse is
divided into 13 pieces cutting along the long axis, with each spanning across 15m,
constructed separately and get rejoined. A section of the most dramatically bifurcated
slab is to be investigated further. The lower slabs are first casted upon the 'pedrail'
formwork, which is then lifted by hydraulic elevator trusses along tracks, sliding back to
the bifurcating position, ready for casting the upper slab with a varied section created
by the variable 'pedrail' formworks.The hierarchical vascular duct system, is achieved
by melting the sacrificial polystyrene moulds buried within the concrete. The seam line
of the formwork left after casting, function as guiding lines for the commuters.
 
 
“因流施材”: 履带滑模施工
水平方向的现浇连续滑移式箱梁模架施工是应用于道路、桥梁的大型混凝土施工工
艺,不同于竖直方向构筑物诸如烟囱的滑模浇筑,受力结构的等截面使得水平浇筑具
有更强的模具连续性。车站大厅的混凝土楼板与屋面在有限元结构形变分析中对受力
薄弱的区域进行局部结构层加固,继而沿长轴竖直切割成为十三跨,每跨十五米进行
分跨浇筑与重新拼接。曲面连续楼板最为典型的交接驳位所在跨被挑选出来,进行细
化探讨:一个大尺度的变截双曲面履带式滑模浇筑器械依照工程需求被研制出来,在
下层曲面楼板全部脱模后,履带式滑模沿轨道滑移回楼板接驳位,液压牵引至上层楼
板高度,进行变截推移,以缩减工时与开支。骨料沿主要人流行进方向埋植,与混凝
土模板的排布方向一同,对大厅的通勤流线做出暗示性界定。计算机辅助制造的大型
树状管脉系统由廉价的聚苯乙烯分段预制拼接植入,在浇筑后进行酸腐,脱尽阳模成
形。

 
 
 
59.上层变截推移 60.阴翳礼赞
59.Upper deck variable-section casting 60.In praise of shadow
 
 
61.流线引导 62-64.动植物体内输流网络优化 65.风压数据读取 66.管脉通径生成 67.
新陈代谢定律 68.四层管脉层级将新风由外部高压区引入末端管径
61.Guiding 62-64.Optimal resource distribution network In animals & plants 65. 
Pressure data importing 66.Vascular path generation 67.Metabolic laws
68.Through four hierarchies of vascular ducts, flow is dragged from outer discharge
zone into to terminal units
 
 
 
 
69. 内视
69. Internal view
 
 
 
 
70. 外观
70. External view
 
 
 
 
 
 
 
 
 
 
 
 
AA Terrace Canopy
(2009-2010, 36 Bedford Square, London, United Kingdom)
AA建筑联盟学院天台加建 (建成项目2009-2010, 英国伦敦拜德佛德广场)
 

Initial Design/方案设计: Shuai Feng (封帅), Ittai Frank
Team/团队(alphabetic/字母降序): Selim Bayer, Kunkun Chen(陈鲲昆), Stéphanie
Chaltiel, Utssav Gupta, Konstantinos Karatzas, Mohamad Khabazi, Tamara
Lavrovskaya, Mohammed Makki, Maria Mingallón, Michael Moukarzel, Sara
Pezeshk,Sakthivel Ramaswamy, Jheny Nieto Ropero, Revano Satria, Kyle L.
Schertzing, Pavlos Schizas, Xia Su(苏夏), Ioanna Symeonidou.
 
Tutor/老师: Michael Weinsock
Consultant/顾问: Wolf Mangelsdorf , Michael Brooks, Luke Epp, Martin Flint, Victoria
Littlewood, Andrea Menardo, Jonathan Vidler.(Buro Happold/英国标赫工程)
Sponsorship/赞助: Architectural Association(AA 建筑联盟学院), Buro Happold(英国标
赫工程), ‘Unto This Last’ CNC(英国永续家具工坊), Alec Tiranti Ltd resin and glass
fibre(意大利艾利克斯提拉提建材) .
 
The AA Canopy 2009 has 9 proposals entered as candidates. Structural engineers
from Buro Happold spent one month assisting the 3 final schemes to enhance the
engineering design. The winning entry had an opportunity to build a one-to-one scale
model; fabricated, assembled and constructed by all the students involved.
 
The winning scheme attempted to provide partial shelter from the rain, shading from the
sun and mitigate the wind for the AA upper terrace- the central public area of the
School. The cascading overlapped structures of decorated gateways in the streets of
Beijing form a complex and delicate system to offer horizontally structural overhanging
that performs as a shading device, whilst sloping properly for draining. Vernacular
houses in Shanghai use spaced tile work, giving porosity to the roof, while
incorporating drainage with air exchanges through the roof surface. Partially distributed
transparent tiles also locally adjust the interior daylight levels. The experimental
example of the AA canopy has exceeded expectations of precedent: the overlapped
composite wooden stripes behaved as a structural system, meeting the high strength
requirements that structural overhanging demands. It also performs well
environmentally, guiding rainwater drains along the overlapped cascading paths, and
providing layered diffuse light effects and maintaining a damped wind environment
beneath it on the terrace. This is trying to recall the atmosphere of sitting under tree
boughs, as sunshine forms shadows that dance and spin on the ground, and cool
breeze whispers through the branches.
 
The design development of the project included two research paths: Genetic
Algorithms and physical experiments based on material properties. The iterative
process of design applied advanced computational tools, deriving input parameters
from spatial arrangement and the environmental conditions of the upper terrace. The
initial surface was generated after 20 successive iterations, to minimize wind load, and
to form a slope to direct the rain to the drainage gutters. Computational Fluid Dynamics
(CFD) simulations were used to assess the consequences of each geometric
modification, the associative digital model progressively reduced the turbulence under
the canopy, and enhanced the stability of the air supplies. The differentiated surface
porosity patterns were then created following the wind pressure gradients cast on the
initial surface, and so reduced the wind load in the most critical areas to enhance its
structural capacity, preventing the canopy from acting as a sail.

In order to improve the structural strength while maintaining certain structural depth and
weight, mature techniques that have been widely spread in the wooden shipbuilding
industry were introduced into the architectural field. The combination of glass fibre and
resin was infiltrated  between the wood fibres, transforming the original laminated tri-
layer plywood into a light-weight super-high-strength composite material. Three vertical
fins levered the canopy up above the columns, acting as a crane, which were then
connected to the columns as a supporting structure. The construction framework that
was used to lever the canopy into place also formed part of the final structure of the
canopy, reducing construction waste and costs.
 

The manufacturing method was constrained by the size of the CNC bed and the
standard size of timber veneer and plywood panels, and the only-student-conducted
fabrication and assembly had to take place within the school in limited space. Limited
access and time brought further constraints on the scale, weight and assembly logic.
The glass-fibreized wooden strips were shaved, polished, lacquered and air-dried over
five times on both sides. The final finished surface was coated with a thin golden glazy
lustre under overcast skies.
 
2009年的AA 建筑联盟学院天台加建项目有9个方案入围。在进行物理实验3个月后进
行决选,并由英国Buro Happold(标赫工程咨询公司)的结构工程师协助三个入选方
案进行1个月的工程图纸深化。最终胜出的方案得到等比例建造的机会,全体参赛同
学共同参与制造组装建造。
获胜方案试图为AA的天台提供一定程度的庇荫和风雨遮挡。北京街头的牌楼使用层叠
搭接的精密复杂结构系统提供水平出挑庇荫,并且形成排水所需的合适坡度;上海地
区的民宅在满足排水要求的同时,利用镂空的瓦作铺接,允许了遮蔽物上下方的空气
交流,部分玻璃的屋瓦进一步对遮蔽物的采光提供了改进。天棚的设计实验在一定程
度上针对既有的工程实践进行革新,使用镂空搭接的复合材料条带作为结构系统,不
仅满足了水平出挑的高结构强度,也体现出树冠一样的环境表现性能:规划雨水沿着
互相叠压的分支排水管径层层流下,与此同时提供层层漫射的光效和过滤衰减的风环
境,形成树荫庇蔽下微风习习,光影斑驳的空间感受。
 
设计在发展中囊括了两个研究方向: 遗传算法以及基于材料性能的物理实验。设计的
迭代推演过程中使用了先进的计算工具:将天台的空间排布与环境信息转化为数据,
输入到优化算法中,经过20个连续的迭代进化,天棚的最初表面得以生成,用以最小
化表面风力荷载,并且形成径直将雨水引入基地的排水管道槽中的坡度。计算流体动
力学模拟(CFD)作为设计工具被引入到天台最初表面的历代几何变化中,天棚表面
的孔洞的孔径梯度变化根据表面风压强度分布图案生成,避免了天棚在风力荷载下成
为鼓满的船帆,增强了结构的稳定性。
为了在保持厚度与重量不变的前提下进一步增强结构强度,广泛应用于木质造船工业
中的成熟工艺被引入建筑领域,玻璃纤维与树脂的复合物渗透至木质条带的纹理中,
完全改变了木材本身的属性,形成一种轻质超高强度复合材料。竖向的木鳍作为施工
过程中的起吊机将天棚吊装起,并在之后将天棚固定于现有的天台上的铁质圆柱上,
使得施工机械最终也成为了建筑的一部分, 减少了施工中的财物浪费。
施工的方法为CNC数控机床和木制胶合板的尺寸所限制,而完全由学生人力完成的制
作以及吊装又只能在学校内院的狭小区域进行,受限的基地使用时间与空间对天棚的
尺寸,重量以及吊装组配策略都提出了更严格的限制。玻璃纤维化条带的表面及背面
各经过5遍的打磨,抛光,上漆及风干处理,最终完成的表面在阴天下呈现出一层浅
浅的金色琉璃色泽。
 
Strip wood kayak. 条带木制'(因纽特)划子'艇
(Source /图片来源: http://www.plunderguide.com/cedar-strip-wood-kayak/;
http://www.treehugger.com/natural-sciences/guillemot-kayaks-make-your-own-wood-kayak.html;
http://www.johnskayak.blogspot.co.uk/; etc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MORE: 
 
 
封帅 Shuai Feng
 
 
 
 
 
 
 
 
.
.
..

 



发表评论

23 评论

  1. Profile Photo

    所以这先锋设计到底先锋在哪里,看上去就是作者自己浸在参数里太久,觉得自己觉得美的东西大家也会觉得美

  2. Profile photo of YUAN

    原来可以看到,现在只能加载出第一段了……为什么…………

  3. 。。。这哥们。。。到底是干嘛的

  4. 好像很高端。。。但总让人感觉华而不实。。。[生病]

  5. 树状管脉与微气候 太赞了

  6. 看他大二的结构课,真心理解不了,看分析图就更迷惑了~~~我不免怀疑,那些分析是后期加的,甚至概念可能都是后期编的,作为同是央美的学弟,我看的都迷惑,难为别人了~~~~~

  7. 好高端呀

  8. 出发点真的很棒。虽然几乎都看不懂·······

  9. 看的最认真的是滑铁卢车站。比较悲观的感觉是这些设计都是建立在一套其他学科的理论上的,如果这套理论被证明是错误的,那设计的再好也没用。这就是所谓的参数化设计会让建筑死亡吧?——我不造里髓

  10. omg,我这个弱b,除了汉字,中间那个树状xx的 真心看不懂,引用名言,虽不知,但觉历!好像未来时代的人穿梭回来的·····不知道是好是坏,不过 思想好赞,是一个好好的出发点。最后感叹下自己 有多弱,如禽兽之耳听人语美句!!!!!!智商知识都是硬伤···

  11. 好先进的技术啊。。。。NB

  12. 跪了,除了那个建出来的,看完都不知道建筑长什么样,指望以后甲方有深厚的美学数学生物学哲学逻辑学基础了

  13. 美院背景 加上AA的参数化 看起来是真的炫 但是我感觉有点故弄玄虚呢 扎哈的方案我看起也没这么不舒服过…… 不知何故 还有 真的特别想看懂 但只是了解了 皮毛 很想读AA 可完全读不起 羡慕嫉妒恨啊

    • Profile photo of Chen Jia

      你只剩下羡慕嫉妒恨了,如果在国内设计院再混上几年,你会忘记什么是设计,只剩下当画图的机器,过几年机器人取代你去画图,剩下的只能失业了。

  14. 不懂觉厉

  15. 请问这个设计者的本科是在AA读的么?还是在哪呢?谢谢。

  16. 解释的能不能详细些啊。。。

  17. kokkugia的气息扑面而来啊

随机推荐工作 所有工作 »

您的浏览器已经过时! 不能正确阅览该网站。Your Browser is outdated to view this website!

请更新您的浏览器或更换 Chrome, Firefox, IE 11, 或 EDGE 以获得最佳浏览体验!Please update your website to the latest browser or switch to Chrome, Firefox, IE 11 or EDGE to get the best experience.现在更新浏览器 Update your browser now

×